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1
MISCUT BULK SUBSTRATES

This application claims the benefit of U.S. Provisional
Application No. 61/470,901 filed on Apr. 1, 2011, which is
incorporated by reference herein in its entirety.

BACKGROUND

The present disclosure is directed to fabrication of optical
devices. More particularly, the disclosure provides methods
and devices using a miscut (Al,Ga,In)N bulk crystal. Certain
embodiments provided by the disclosure include techniques
for fabricating light emitting devices using miscut gallium
nitride containing materials. Such devices can be applied to
applications such as optoelectronic devices. In certain
embodiments, the disclosure provides methods of manufac-
ture using an epitaxial gallium containing crystal with
extremely smooth surface morphology and uniform wave-
length over a large surface area of the substrate. Such crystals
and materials include GaN, AIN, InN, InGaN, AlGaN, and
AllnGaN, for manufacture of bulk or patterned substrates.

In the late 1800’s, Thomas Edison invented the light bulb.
The conventional light bulb, commonly called the “Edison
bulb,” has been used for over one hundred years. The conven-
tional light bulb uses a tungsten filament enclosed in a glass
bulb sealed in a base, which is screwed into a socket. The
socket is coupled to an AC power or DC power source. The
conventional light bulb can be found commonly in houses,
buildings, and outdoors. Unfortunately, the conventional
light bulb dissipates more than 90% of the energy used as
thermal energy. Additionally, the light bulb eventually fails
due to evaporation of the tungsten filament.

Fluorescent lighting uses an optically clear tube filled with
a noble gas, and typically also contains mercury. A pair of
electrodes is coupled to an alternating power source through
a ballast. Once the mercury has been excited, it discharges to
emit UV light. Typically, the tube is coated with phosphors,
which are excited by the UV light to provide white light.
Recently, fluorescent lighting has been fitted onto a base
structure to couple into a standard socket.

Solid state lighting relies upon semiconductor materials to
produce light emitting diodes, commonly called LEDs. At
first, red LEDs were demonstrated and introduced into com-
merce. Modern, red LEDs use aluminum indium gallium
phosphide or AllnGaP semiconductor materials. Most
recently, Shuji Nakamura pioneered the use of InGaN mate-
rials to produce LEDs emitting light in the blue range for blue
LEDs. Blue LEDs led to innovations in lighting, and the blue
laser diode enabled DVD players, and other developments.
Blue, violet, or ultraviolet-emitting devices based on InGaN
are used in conjunction with phosphors to provide white
LEDs.

BRIEF SUMMARY

This disclosure generally relates to manufacture of mate-
rials and devices. More particularly, the disclosure provides
methods and devices using a miscut (Al,Ga,In)N bulk crystal.
Certain embodiments provided by the disclosure include
techniques for fabricating light emitting devices and/or elec-
tronic devices using miscut gallium nitride containing mate-
rials. Devices provided by the present disclosure can be
applied to applications such as optoelectronic devices. In
certain embodiments, the disclosure provides methods of
manufacture using a high quality epitaxial gallium containing
crystal with extremely smooth surface morphology and uni-
form wavelength across a large surface area of the substrate.
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Such crystals and materials include GaN, AIN, InN, InGaN,
AlGaN, and AllnGaN, for manufacture of bulk or patterned
substrates.

Certain embodiments provided by the present disclosure
include methods for processing and utilizing bulk substrates.
Certain methods include fabricating at least one (Al,Ga,In)N
thin film directly on a (Al,Ga,In)N substrate or template. The
substrate or template has a surface characterized by a miscut
angle of at least 0.35 degrees toward the m-direction, and the
projection of the surface normal coincides with the m-axis.
The substrate or template can be obtained by slicing a c-plane
wafer at a predetermined miscut angle of at least 0.35 degrees
relative to c-plane toward or away from the m-direction.

In certain embodiments, the present disclosure provides
methods for manufacturing optical devices from a bulk sub-
strate material, such as a bulk gallium and nitrogen containing
substrate material, for example, GaN. Methods include pro-
viding a bulk gallium and nitrogen containing substrate mate-
rial having a top surface. At least one surface region on the top
surface of the bulk gallium and nitrogen containing substrate
has a miscut angle of at least 0.35 degrees toward the m-di-
rection. Methods also include subjecting the surface region to
atreatment process to remove one or more areas with surface
damage or sub-surface damage within the surface region. A
treatment process can be a thermal process using a hydrogen
and nitrogen bearing species. In certain embodiments, the
method includes forming a n-type gallium and nitrogen mate-
rial (or undoped material) overlying the surface region and
forming an active region from a stack of thin film layers. Each
of the thin film layers may comprise an indium species, an
aluminum species, and a gallium and nitrogen containing
species overlying the n-type gallium and nitrogen containing
material. In certain embodiments, the method includes form-
ing an aluminum gallium and nitrogen containing electron
blocking material overlying the active region and forming a
p-type gallium and nitrogen containing material overlying the
electron blocking material to cause formation of a processed
gallium and nitrogen containing substrate. In certain embodi-
ments, the processed bulk gallium and nitrogen containing
substrate is characterized by a photoluminescence (PL) wave-
length standard deviation of 0.2% and less; and each of the
thin film layers have a surface region characterized by a root
mean squared (RMS) surface roughness of 0.3 nm and less
over an area of at least 2,500 um?.

In certain embodiments, a hydrogen bearing species and a
nitrogen bearing species are derived from hydrogen gas and
ammonia gas, respectively. In certain embodiments, a n-type
gallium and nitrogen containing material is n-type GaN. In
certain embodiments, a p-type gallium and nitrogen contain-
ing material is p-type GaN. In certain embodiments, an elec-
tron blocking material is AlGaN. In certain embodiments,
each of'the thin film layers forming the active region is Alln-
GaN. In certain embodiments, the active layer comprises a
plurality of quantum wells, which comprise. for example,
from three to twenty quantum wells. In certain embodiments,
each of the quantum wells may be separated by a barrier
region. In certain embodiments, a barrier region comprises
GaN.

In certain embodiments, the present disclosure provides
methods for fabricating a device. Method include, for
example, providing a gallium and nitrogen containing sub-
strate having a surface region, which has a c-plane surface
region characterized by a miscut angle of at least 0.35 degrees
from the c-plane toward the m-direction. In certain embodi-
ments, the method includes forming a gallium and nitrogen
containing thin film comprising an aluminum bearing species
and an indium bearing species on the gallium and nitrogen
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containing substrate. In certain embodiments, the methods
include forming an electrical contact region overlying the thin
film.

The disclosure provides ways for identifying and selecting
portions and/or regions of a substrate that are suitable for
manufacturing LED diodes or other devices. Such regions are
characterized by a miscut angle of at least 0.35 degrees
toward the m-direction on a gallium and nitrogen containing
substrate. Surprisingly, using miscut angles of at least 0.35
degrees toward the m-direction improves consistency and
yield of processed devices. By having a miscut angle of at
least 0.35 degrees toward the m-direction, or in certain
embodiments, greater than 0.4 degrees toward the m-direc-
tion and/or the a-direction, as opposed to a lower miscut
angle, the surface morphology of a substrate is improved in a
way that is advantageous for manufacturing LED devices
such that the manufacturing yield of the devices is increased
and the performance is improved. A miscut angle of at least
0.35 degrees toward the m-direction results in a smooth sub-
strate surface to improved device performance and reliability.
One ofthe reasons for improved performance is that a smooth
substrate surface results in high carrier mobility and lower
series resistance. In addition, a smooth substrate surface
reduces optical scattering of optical devices formed on the
substrate. Overall, improved PL performance is achieved
using a miscut of at least 0.35 degrees from a c-plane toward
the m-direction.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows a miscut map of a substrate (Substrate A)
cut along the m-direction. The values represent angles with
respect to the c-plane.

FIG. 1B shows a miscut map of a substrate cut along the
a-direction. The values represent angles with respect to the
c-plane

FIG. 2 shows photo luminescence (PL) maps for an InGaN/
GaN heterostructure grown on the substrate of FIG. 1A and
FIG. 1B.

FIG. 3 Nomarski images of the surface morphology of a
grown on Substrate A. The Nomarski images correspond to
the relative position on Substrate A illustrated on the left side
of FIG. 3.

FIG. 4 shows atomic force microscopy (AFM) amplitude
images of five 2x2 um? areas of Substrate A. The root-mean-
square (RMS) average amplitudes (nm) are indicated for cer-
tain areas.

FIG. 5 shows atomic force microscopy (AFM) amplitude
images of five 50x50 um? areas of Substrate A. The root-
mean-square (RMS) average amplitudes (nm) are indicated
for certain areas.

FIG. 6A shows the crystallographic planes for a c-plane
wafer miscut toward the m-direction (m-axis).

FIG. 6D shows a cross-sectional view of a wafer depicting
the relative orientation of lattice planes with respect to the
wafer surface for a miscut wafer.

FIG. 6C shows the crystallographic planes for a c-plane
wafer miscut toward the m-direction (m-axis) and toward the
a-direction (a-axis).

FIG. 6B shows a cross-sectional view of a wafer depicting
the relative orientation of lattice planes with respect to the
wafer surface for a miscut wafer.

FIG. 7 shows Nomarski images of the surface morphology
of a c-plane wafer miscut at angles of 0.14°, 0.23°, 0.31°,
0.36°,0.41°, and 0.45° toward the m-direction.
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FIG. 8 is a graph showing the relationship between miscut
angle in the m-direction and in the a-direction and RMS
surface roughness.

FIG. 9 shows steps for growing an optical device according
to certain embodiments provided by the present disclosure.

FIG. 10 shows steps for growing a rectifying p-n junction
diode according to certain embodiments provided by the
present disclosure.

FIG. 11 shows steps for growing a high electron mobility
transistor or a metal-semiconductor field effect transistor
according to certain embodiments provided by the present
disclosure.

DETAILED DESCRIPTION

Reference is now made to certain embodiments of poly-
mers, compositions, and methods. The disclosed embodi-
ments are not intended to be limiting of the claims. To the
contrary, the claims are intended to cover all alternatives,
modifications, and equivalents.

The present disclosure generally relates to the manufacture
of materials and devices. More particularly, the present dis-
closure provides methods and devices using a miscut (Al,Ga,
In)N bulk crystal. Certain embodiments provided by the
present disclosure include techniques for fabricating light
emitting devices using miscut gallium nitride containing
materials. Devices provided by the present disclosure can be
applied to applications such as optoelectronic devices. In
certain embodiments, the present disclosure provides meth-
ods of manufacture using an epitaxial gallium containing
crystal having a smooth surface morphology and uniform
wavelength across a large area of the substrate. Such crystals
and materials include GaN, AIN, InN, InGaN, AlGaN, and
AllnGaN, and can be used for the manufacture of bulk or
patterned substrates. As used herein, the term substrate also
includes templates.

As background information, conventional GaN-based light
emitting diodes (LED) emitting in the ultraviolet and visible
regions are typically based on hetereoepitaxial growth where
growth is initiated on a substrate other than GaN such as
sapphire, silicon carbide, or silicon. This is due to the limited
supply and high cost of free-standing GaN substrates, which
has prevented their viability for use in LED manufacture.
However, the field of bulk-GaN technology has seen rapid
gains over the past couple of years providing promise for
large-scale deployment into LED manufacture. Such a tech-
nology shift will provide benefits to LED performance and
manufacturing.

Progress has been made during the past decade and a halfin
the performance of gallium nitride-(GaN) based light emit-
ting diodes. Devices with a luminous efficiency greater than
100 lumens per watt have been demonstrated in the labora-
tory, and commercial devices have an efficiency that is
already considerably superior to that of incandescent lamps,
and that is competitive with fluorescent lamps. Further
improvements in efficiency can reduce operating costs,
reduce electricity consumption, and decrease emissions of
carbon dioxide and other greenhouse gases produced in gen-
erating the energy used for lighting applications.

Smooth morphology is important for high-quality crystal
growth. Heavily dislocated films of GaN grown on sapphire,
SiC, or other non-native substrates have morphologies and
growth conditions dictated by the microstructure of the film.
On the other hand, growth of GaN on native bulk substrates is
no longer heavily mediated by the defect structure of the film;
thus it can be expected that optimum growth conditions and
surfaces may be different from growth on dislocated material.
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Unfortunately, obtaining smooth morphology for crystals
used for making LEDs is difficult, especially when GaN
material is grown on native bulk substrates. The surface of
GaN material used for manufacturing LED devices is often
uneven, and usually has miscuts, which are generally thought
undesirable for LED devices. The present disclosure takes
advantage of the miscuts and uneven surface of the GaN
substrate, as described below. As used herein, “miscut” refers
to a surface angle that is off from the “a-plane,” the “m-plane,”
or other crystallographic plane. “Miscut” also refers to the
angle between a wafer surface and the closest high-symme-
try/low-index major crystallographic plane, e.g., c-plane,
m-plane, or a-plane.

Certain embodiments provided by the disclosure provide
methods for improving the surface morphology of (Al,Ga,
In)N thin films grown on bulk (Al,Ga,In)N substrates. Meth-
ods provided by the present disclosure also result in a uniform
emission wavelength in layer structures containing (Al,Ga,
In)N bulk layers or heterostructures. The obtained smooth
(ALGa,In)N thin films can serve as a template for the growth
of high performance light emitting and electronic devices.
Common vapor phase epitaxy techniques, such as metalor-
ganic chemical vapor deposition (MOCVD), molecular beam
epitaxy (MBE) and hydride vapor phase epitaxy (HVPE), can
be used to grow the (Al,Ga,In)N thin films. Certain embodi-
ments provided by the present disclosure, however, are
equally applicable to (Ga,Al,In,B)N thin films grown by other
suitable vapor phase growth techniques.

Disclosed herein are methods for improving the surface
morphology of (Al,Ga,In)N thin films grown on bulk sub-
strates by intentionally employing miscuts. Improved surface
morphology can lead to a number of advantages for nitride
devices, including improved uniformity in the thickness,
composition, doping, electrical properties, and/or lumines-
cence characteristics of the individual layers in a given
device. Furthermore, the resulting smooth surfaces lead to
significant reductions in optical scattering losses, which is
beneficial to the performance of, for example, laser diodes.

Typically when epitaxy occurs on a miscut surface, a par-
ticular plane is exposed at the end of a terrace in a set of
terraces. The miscut direction specifies the plane that is
exposed, and for growth on [0001] or [000-1] GaN surfaces,
can comprise a superposition of the [1-100] and [11-20]
directions. The angle away from normal defines the step
density. A miscut toward [1-100], for example, exposes a set
of' m planes. Smooth surface morphology can be achieved by
growing GaN on a native GaN bulk substrates having a miscut
toward the [1-100] plane (m-direction) of at least 0.35
degrees. In embodiments wherein a miscut varies across a
substrate or wafer, the minimum off-cut toward the [1-100]
direction should be at least 0.35° degrees. The substrate mis-
cut in the [11-20] direction may vary by a wider margin, for
example, from -1 degrees to 1 degree, in certain embodi-
ments from -1 degrees to 1.5 degrees, or in certain embodi-
ments greater than from —1.5 degrees to 1.5 degrees. Growth
on greater miscut angles may yield rough surfaces character-
ized by severe step-bunching that manifests as a ‘rippled’ or
‘wrinkled’ surface as shown in F1G. 3 and in FIG. 7. As shown
in FIG. 3 and FIG. 7, the fraction of the surface that is
composed of ripples is reduced with increasing miscut angle
up to about 0.35 degrees, at which miscut angle significant
defects are no longer evident.

Certain embodiments provided by the present disclosure
include a nonpolar or semipolar (Ga,Al,In,B)N film compris-
ing a top surface that is a nonpolar or semipolar plane, having
a planar and optically smooth area, such that the area has an
absence of identifiable non-planar surface undulations or fea-
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tures as measured using an optical microscope and with light
wavelengths between 400 nm and 600 nm, wherein the area is
sufficiently large for use as a substrate for epitaxial deposition
of'one or more device layers on a top surface of the area, and
the device layers emit light having an output power of at least
2 milliwatts at 20 milliamps (mA) drive current.

FIG. 11is a simplified representation of the substrate miscut
across a substrate. The substrate shown in FIG. is a bulk GaN
substrate. FIG. 1A depicts the variation of m-miscut or miscut
toward the [ 1-100] direction. FIG. 1B depicts the variation of
a-miscut or miscut toward the [11-20] direction. The miscut
angles with respect to the c-plane are shown in the surfaces of
the substrates depicted in FIG. 1A and FIG. 1B. As shown in
FIG. 1A, miscut angles toward the m-direction range from
about 0.2 degrees to about 0.7 degrees. In comparison, as
shown in FIG. 1B, miscuts toward the a-direction range from
about —0.65 degrees to about 1 degrees.

FIG. 2 shows photoluminescence (PL) maps for an InGaN/
GaN heterostructure grown on a substrate. The wavelength
distribution, PL intensity, and full-width-half-maximum
(FWHM) across the wafer are represented. One aspect of the
substrate performance is wavelength consistency, as shown
on the top left of FIG. 2 (Peak Lambda 1). Referring to the
miscut angles along m-direction shown in FIG. 1, it can be
seen that there is a greater amount of uniformity in wave-
length where the miscut angle is at least 0.35 degrees. For
example, for a miscut angle 0of' 0.35 degrees or greater toward
the m-direction, the wavelength is close to 388.5 nm t0 393.6
nm, whereas when the miscut angle is at least 0.35 degrees,
the wavelength can be over 400 nm. As an example, the PL,
emission wavelength across the substrate, for a fixed a-plane
miscut, varies with the m-plane miscut, when the m-plane
miscut is less than 0.35 degrees. Alternatively, the PL. emis-
sion wavelength across the substrate, for a fixed m-plane
miscut is substantially insensitive to the a-plane miscut. Other
PL characteristics such as peak intensity (Peak Int 1), signal
intensity (Int. Signal 1) and FWHM across the device surface
are also provided.

FIG. 3 shows the surface morphology of a device grown on
a substrate. The images were obtained by Nomarski micros-
copy and correspond to various locations on the substrate. As
can be seen, a wrinkled surface becomes visible at the left
hand side where the miscut angle along the m-direction is less
than 0.35 degrees. In contrast, when the miscut angle is at
least 0.35 degrees, the winkled surface is less apparent.
Therefore, substrate areas having a miscut angle of at least
0.35 degrees toward the m-direction can be used to eliminate,
reduce, or minimize wrinkled surfaces on bulk gallium and
nitrogen containing substrates and layers grown on such sub-
strates.

FIG. 4 shows atomic force microscopy (AFM) amplitude
or height images across 2 umx2 pum areas on different parts of
a substrate surface. The corresponding RMS roughness val-
ues (nm) are indicated for certain of the individual images.

FIG. 5 shows AFM height or amplitude images across 50
umx50 pm areas on different parts of a substrate surface. The
corresponding RMS roughness (nm) is indicated for each of
the individual images. At a 50 umx50 um level, the uneven-
ness is more pronounced (e.g., RMS 6.77 nm) for areas with
a miscut angle less than 0.35 degrees. In contrast, in areas
where the miscut angle is at least 0.35 degrees, the uneven-
ness is less, ranging from RMS of 0.25 nm to 0.6 nm.

In certain embodiments, methods for fabricating (Al,Ga,
In)N thin film on substrate areas are provided that have a
miscut angle of at least 0.35 degrees. Methods also provide a
substrate or template with a miscut away from a low index
crystal orientation. A (Al,Ga,In)N thin film can be grown
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directly on a Ga-face (Al,Ga,In)N substrate or template
which is a miscut c-plane substrate or template. The substrate
or template can be a Ga-face c-plane substrate or template,
and the miscut angle toward [ 1-100] direction is at least 0.35
degrees. The resulting surface morphology of the (Al Ga,
In)N film is atomically smooth with a RMS roughness of less
than 1 nm over at least a 2,500 um?® area of the surface. In
certain embodiments, a RMS roughness of less than 0.2 nm
over at least a 2,500 um? area of the surface has also been
observed. It is to be appreciated that the miscut angle of at
least 0.35 degrees toward the m-direction provides wave-
length uniformity for a device fabricated on the surface. In
certain embodiments, the standard deviation of wavelength
uniformity across the smooth surface is less than 1%, and in
certain embodiments, less than 0.2%.

In certain embodiments, the RMS roughness is less than 1
nm over a surface area of at least 500 um?, at least 1,000 um?,
at least 1,500 um?, at least 2,000 um?, at least 2,500 pm?, at
least 3,000 pm?, at least 4,000 um?, and in certain embodi-
ments, at least 5,000 um?. In certain embodiments, the RMS
roughness is less than 0.2 nm over a surface area of at least
500 um?, at least 1,000 um?, at least 1,500 um?, at least 2,000
um?, at least 2,500 um?, at least 3,000 um?, at least 4,000 pm?,
and in certain embodiments, at least 5,000 pm?.

In certain embodiments, the substrate or template is an
Ga-face c-plane substrate or template, and the miscut angle
toward the [1-100] direction is at least 0.35 degrees, and less
than 0.6 degrees, and in certain embodiments, less than 1
degree. When a (Al,Ga,In)N film is grown on a surface of the
miscut, the surface morphology of the (Al,Ga,In)N film is
atomically smooth with a RMS roughness of less than 1 nm,
and in certain embodiments less than 0.2 nm over at least a
2,500 um? area of the surface. The wavelength of the emission
from a (Al,Ga,In)N containing device grown on the surface is
substantially uniform across the surface, with a standard
deviation of wavelength uniformity less than 1%, and in cer-
tain embodiments, as low as less than 0.2%

In certain embodiments, the substrate or template is an
Ga-face c-plane substrate or template, and the miscut angle
toward the [1-100] direction is greater than at least 0.35
degrees and less than 0.75 degrees or, in certain embodi-
ments, less than 0.8 degrees. A (Al,Ga,In)N film grown on a
surface of the miscut is atomically smooth with a RMS rough-
ness of less than 1 nm over at least a 2,500 pm? area and in
certain embodiments, less than 0.2 nm over at least a 2,500
um? area of the surface.

A substrate can also be oriented along the c-plane. In
certain embodiments, the substrate or template is a Ga-face
c-plane substrate or template, and the miscut angle toward the
[11-20] direction is greater than —1 degree and less than 1
degree. In certain embodiments, the substrate or templateis a
Ga-face c-plane substrate or template, the miscut angle
toward the [1-100] direction of at least 0.35 degrees and less
than 0.6 degrees or in certain embodiments, less than 1
degree; and the miscut angle toward the [11-20] direction is
greater than -1 degree and less than 1 degree. A (Al,Ga,In)N
film grown on the surface of the miscut has a surface mor-
phology of the (Al,Ga,In)N with a RMS roughness of less
than 1 nm, and in certain embodiments less than 0.2 nm over
atleasta 2,500 um? of the surface with a standard deviation of
wavelength uniformity less than 1% and in certain embodi-
ments, less than 0.2%. Similar results are achieved when the
substrate or template is a Ga-face c-plane substrate or tem-
plate, with a miscut angle toward the [1-100] direction of at
least 0.35 degrees and less than 0.75 degrees or in certain
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embodiments, less than 0.8 degrees; a miscut angle toward
the [11-20] direction greater than —1 degree, and less than 1
degree.

The layers of material can be formed in various ways. The
multiple (Al,Ga,In)N layers can be grown successively and
can be used to form a light emitting device and/or an elec-
tronic device. The layers include n- and p-type doped layers in
which at least one active region is formed.

In certain embodiments, the present disclosure provides
methods for manufacturing LED diodes from bulk substrate
material. The methods include providing a bulk substrate
material having a top surface with a region characterized by a
c-plane orientation with a miscut angle of at least 0.3 degrees
or at least 0.35 degrees toward an m-direction. The region is
diced to form separate members in which LED diodes are
formed.

FIGS. 6 A-D illustrate substrate materials according to cer-
tain embodiments provided by the present disclosure. In FI1G.
6A, a bulk substrate 602 has a cylindrical shape (similar to as
single crystal boule) in the [0001] direction 616. To obtain
substrates that can be used for manufacturing LED devices,
the top surface 604 of the bulk substrate, which is aligned
according to the c-plane 601 (i.e., the crystallographic [0001]
plane), can be used as a reference plane to generate c-plane
wafers 612. Conventional processing techniques include, for
example, slicing a bulk substrate along a surface substantially
parallel to the c-plane 601 to provide an on-axis c-plane wafer
612. In contrast, certain embodiments provided by the present
disclosureuse a “miscut angle” surface for the wafer material.
As shown in FIG. 6A, the c-plane wafer surface is defined by
the a-axis [2110] 606 and the m-axis [0110] 608. In FIG. 6A,
a miscut angle 614 of at least 0.35 degrees relative to the
m-axis 608 can be selected to obtain an even and smooth
surface for the wafer material 610 used to manufacture LED
devices.

In FIG. 6B, a bulk substrate 602 has a cylindrical shape
(similar to as single crystal boule) in the [0001] direction 611.
To obtain substrates that can be used for manufacturing LED
devices, the top surface 604 of the bulk substrate, which is
aligned according to the c-plane 601 (i.e., the crystallographic
[0001] plane), can be used as a reference plane to generate
c-plane wafers. Conventional processing techniques include,
for example, slicing a bulk substrate along a surface substan-
tially parallel to the c-plane 601 to provide an on-axis c-plane
wafer 612. In contrast, certain embodiments provided by the
present disclosure use a “miscut angle” surface for the wafer
material. As shown in FIG. 6B, the c-plane wafer surface is
defined by the a-axis 606 and the m-axis [0110] 608. As
shown in FIG. 6B, a miscut angle 614 of at least 0.35 degrees
relative to the a-axis 606 can be selected to obtain an even and
smooth surface for a wafer material 610.

In FIG. 6C, a bulk substrate 602 has a cylindrical shape
(similar to as single crystal boule) in the [0001] direction 611.
To obtain substrates that can be used for manufacturing LED
devices, the top surface 604 of the bulk substrate, which is
aligned according to the c-plane 601 (i.e., the crystallographic
[0001] plane), can be used as a reference plane to generate
c-plane wafers. Conventional processing techniques include,
for example, slicing a bulk substrate along a surface substan-
tially parallel to the c-plane 601 to provide an on-axis c-plane
wafer 612. In contrast, certain embodiments provided by the
present disclosure use a “miscut angle” surface for the wafer
material. As shown in FIG. 6C, the c-plane wafer surface is
defined by the a-axis [2110] 606 and the m-axis [0110] 608.
In FIG. 6C, a miscut angle of at least 0.35 degrees relative to
both the a-axis and the m-axis can be selected to obtain an
even and smooth surface for the wafer material 610.
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FIG. 6D provides a schematic cross-sectional view depict-
ing relative orientation of lattice planes 626 with respectto a
wafer surface 624 in a miscut wafer. As can be seen from FIG.
6D, the miscut direction 618 normal to the surface 620 is “off”
from the crystal plane normal 622.

In certain embodiments, the miscut angle on the c-plane is
at least 0.30 degrees toward the m-direction, at least 0.32
degrees, at least 0.35 degrees, at least 0.37 degrees, at least
0.40 degrees, and in certain embodiments, at least 0.42
degrees.

FIG. 7 shows images for various miscut substrates accord-
ing to certain embodiments provided by the present disclo-
sure. As shown, there is a decrease in surface roughness at
miscut angles of at least 0.35 degrees toward the m-axis.

FIG. 8 shows the relationship of surface roughness to mis-
cut angle for c-plane substrates miscut toward the m-direction
and toward the a-direction according to certain embodiments
provided by the present disclosure. As shown, the surface
roughness is dramatically reduced at miscut angles of at least
about 3.5 degrees toward the m-direction.

FIG. 9 shows an example of growth steps for fabricating an
optical device according to certain embodiments provided by
the present disclosure. The optical device shown in FIG. 9
includes a bulk GaN substrate 901, which can be miscut as
provided herein, a n-type layer 902 such as silicon-doped
GaN layer, an active region comprising, for example, multiple
quantum wells including active layers 903 and barrier layers
904, an electron blocking layer 905, and a p-type layer 907
such as a Mg-doped GaN layer. In certain embodiments, the
p-layer comprises a second p-type layer 906, where p type
layer 906 acts as an electron blocking layer and p-type layer
907 serves as a contact area. As shown in FIG. 9, the growth
sequence includes depositing at least (1) an n-type epitaxial
material; (2) an active region; (3) an electron blocking region;
and (4) a p-type epitaxial material. Of course, there can be
other variations, modifications, and alternatives. Further
details of the present method can be found throughout the
present specification and more particularly below. Examples
of certain attributes and deposition parameters for the various
materials forming the layers shown in FIG. 9 are provided as
follows:

1. Bulk wafer:

Any orientation, e.g., polar, non-polar, semi-polar, c-plane.

(Al,Ga,In)N-based material

Threading dislocation (TD) density: <I1E8 cm™2

Stacking fault (SF) density: <1E4 cm™!

Doping: >1E17 cm™

2. N-type epitaxial material:

Thickness: <5 um, <1 um, <0.5 pm, <0.2 um

(AL, Ga,In)N based material

Growth Temperature: <1,200° C., <1,000° C.

UID or doped

3. Active regions:

At least one AllnGaN layer

Multiple Quantum Well (MQW) structure

QWs are >20 A, >50 A, >80 A thick

QW and n- and p-layer growth temperature identical, or
similar

Emission wavelength <575 nm, <500 nm, <450 nm, <410
nm

4. P-type epitaxial material

At least one Mg-doped layer

<0.3 um, <0.1 pm

(AL Ga,In)N based

Growth T<1100° C., <1000° C., <900° C.

At least one layer acts as an electron blocking layer.

At least one layer acts as a contact layer.
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FIG. 10 shows an example of steps for growing a rectifying
p-n junction diode according to certain embodiments pro-
vided by the present disclosure As shown in FIG. 10, the
growth sequence includes depositing at least (1) an n-type
epitaxial material 1002; and (4) a p-type epitaxial material
1003. In certain embodiments, bulk GaN substrate 1001
includes a (Al,Ga,In)N-based substrate with any orientation
such as a miscut orientation disclosed herein, a threading
dislocation density less than 1E8 cm™2, a stacking fault den-
sity less than 5E3 cm™" and a doping greater than 1E17 cm™.
In certain embodiments, n-layer 1002 is (AlGaln)N-based
such as n-GaN. In certain embodiments, n-layer 1002 has a
thickness less than 2 pum, less than 1 pm, less than 0.5 pm, and
in certain embodiments, less than 0.2 um. In certain embodi-
ments, n-layer 1002 is grown at a temperature less than 1200°
C. and in certain embodiments, less than 1000° C. In certain
embodiments, n-layer 1002 may be unintentionally doped or
doped. The device shown in the upper portion of FIG. 10
shows an example of a device comprising a bulk GaN sub-
strate, an n-type layer 1002 such as a Si-doped AllnGaN
layer, and a p-type layer 1003, such as a Mg-doped AllnGaN
layer.

FIG. 11 shows an example of a simplified growth method
for forming a high electron mobility transistor or a metal-
semiconductor field effect transistor according to certain
embodiments provided by the present disclosure. As shown,
the growth sequence includes depositing at least (1) an unin-
tentionally doped epitaxial material (buffer); and (4) an (Al-
InGaN) barrier material, which is either unintentionally
doped or n-type doped. In certain embodiments, bulk GaN
substrate 1101 includes a (Al,Ga,In)N-based substrate with
any orientation such as a miscut orientation disclosed herein,
athreading dislocation density less than 1E8 cm™2, a stacking
fault density less than SE3 cm™ and a doping greater than
1E17 cm™. In certain embodiments, buffer layer 1102 is
(AL,Ga,IN)N-based such as n-GaN. In certain embodiments,
buffer layer 1102 has a thickness less than 2 pm, less than 1
um, less than 0.5 pm, and in certain embodiments, less than
0.2 um. In certain embodiments, buffer layer 1102 is grown at
atemperature less than 1200° C. and in certain embodiments,
less than 1000° C. In certain embodiments, buffer layer 1102
comprises a single layer rendered semi-insulating by Fe or C
doping. In certain embodiments, buffer layer 1102 is unin-
tentionally doped. In certain embodiments, a barrier layer has
a thickness less than 0.1 um, less than 500 nm, and in certain
embodiments, less than 30 nm. In certain embodiments, the
barrier layeris (Al,Ga,In)N-based such as AlGaN, which may
be doped with Si or unintentionally doped. In certain embodi-
ments, the barrier layer is a single layer. In certain embodi-
ments, the barrier layer is grown at a temperature of less than
1200° C.,less than 1100° C., and in certain embodiments, less
than 1000° C. As shown at the top of FIG. 11, in certain
embodiments, a device may be a HEMT or a MESFET, com-
prising, for example, a bulk GaN substrate 1101, an uninten-
tionally doped GaN buffer layer, and an unintentionally
doped or Si-doped AlGaN barrier layer.

Although the above disclosure is primarily directed to LED
devices, it will be appreciated that the methods and materials
can be applied to the fabrication and processing of other
electronic and optoelectronic devices. As an example, certain
embodiments provided by the present disclosure can be
applied using an autocassette MOCVD reactor where the
cassette holds two or more single wafers or wafer platters for
multi-wafer reactors. In certain embodiments, an epitaxial
structure can form an LED device capable of emitting elec-
tromagnetic radiation in a range 0£ 390-420 nm, 420-460 nm,
460-450 nm, 500-600 nm, and others. In certain embodi-
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ments, various devices can be fabricated using methods, sub-
strates, and materials provided by the present disclosure
including, for example. p-n diodes, Schottky diodes, transis-
tor, high electron mobility transistors (HEMT), bipolar junc-
tion transistors (BJT), heterojunction bipolar transistors
(HBT), metal-semiconductor field effect transistors (MES-
FET), metal-oxide-semiconductor field effect transistors
(MOSFET), metal-insulator-semiconductor heterojunction
field eftect transistors (MISHFET), and combinations of any
of'the foregoing. In certain embodiments, a gallium and nitro-
gen containing material used as a substrate can be character-
ized by one or various surface orientations, e.g., nonpolar,
semipolar, polar.

Finally, it should be noted that there are alternative ways of
implementing the embodiments disclosed herein. Accord-
ingly, the present embodiments are to be considered as illus-
trative and not restrictive. Furthermore, the claims are not to
be limited to the details given herein, and are entitled their full
scope and equivalents thereof.

What is claimed is:

1. A device comprising;

abulk (Al,Ga,In)N substrate;

a plurality of epitaxial layers overlying the bulk (Al,Ga,
In)N substrate and defining a light-emitting device
structure,

wherein a top surface of the device structure is character-
ized by a nominal c-plane crystallographic orientation
miscut by an angle from 0.35 degrees to 1 degrees
toward an m-direction; and

wherein the epitaxial layers of the light-emitting device
structure are configured to have a standard deviation of
photoluminescent wavelength uniformity of less than
1% over at least a 2,500 um? area.

2. The device of claim 1, wherein:

the epitaxial layers of the light-emitting device structure
are configured such that the top first surface is charac-
terized by a root mean square surface roughness of less
than 1 nm over the at least 2,500 pm? surface area.

3. The device of claim 2, comprising at least one n-type

doped layer overlying the bulk (Al,Ga,In)N substrate.

4. The device of claim 3, comprising at least one active
region overlying the at least one n-type doped layer.
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5. The device of claim 4, wherein the top surface is char-
acterized by a nominal Ga-face c-plane crystallographic ori-
entation miscut by an angle from 0.35 degrees to 1 degrees
toward a <1-100> direction, and by an angle from -1 degree
to 1 degree toward a <11-20> direction.

6. The device of claim 4, comprising at least one p-type
doped layer overlying the at least one active region.

7. The device of claim 4, wherein the at least one active
layer comprises AllnGaN.

8. The device of claim 1, wherein the top surface is char-
acterized by an RMS surface roughness from 0.25 nm to 0.6
nm over at least a 2,500 um? surface area.

9. The device of claim 1, wherein the top surface is char-
acterized by a RMS surface roughness less than 0.2 nm over
at least a 2,500 um? area.

10. The device of claim 1, wherein the device structure is
characterized by a standard deviation of photoluminescent
wavelength uniformity is less than 1% over at least a 2,500
um? surface area.

11. The device of claim 1, wherein the device structure is
characterized by a standard deviation of photoluminescent
wavelength uniformity is less than 0.2% over at least a 2,500
um? surface area.

12. The device of claim 1, wherein the miscut angle is from
0.35 degrees to 0.8 degrees toward the m-direction.

13. The device of claim 1, wherein the top surface is further
characterized by a miscut angle from -1 degrees to 1 degree
toward a <11-20> direction.

14. The device of claim 1, wherein the device comprises a
light emitting diode.

15. The device of claim 14, wherein the light emitting
diode is characterized by an output power of at least 2 milli-
watts at 20 milliamps drive current.

16. The device of claim 1, wherein the bulk (Al,Ga,In)N is
bulk GaN.

17. The device of claim 1, wherein the device comprises a
wafer.

18. A semiconductor device fabricated from the wafer of
claim 17.



